
CS152: Computer Systems Architecture
System Bus Architecture

Sang-Woo Jun

Winter 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Covered computer architecture so far

CPU

Memory

GPU

Memory bus/
Interconnect

PCIe…? …MMIO?

At a high level: The system bus

“The Z80's original DIP40 chip package pinout,” Sakurambo, Wikimedia commons

CPU + Cache

Peripherals

Memory ROM

Address pins

Data pins

“A very early version of the Zilog Z80,”Damicatz, Wikimedia commons

❑ A “system bus” connects cpu, memory, and I/O

❑ Historically, this used a be an actual bus
o Bundle of shared wires!

o Still used in embedded systems, (I2C, SPI, …)

o “Slaves” (not CPU) snoop the address pins, and respond when
address is directed to itself

o Cooperation/Agreement critical!

Modern system busses are multi-tiered

❑ Conceptually divided into two clusters
o Fast devices connected via “North bridge”

• Memory, PCIe, …

o Slow devices connected via “South bridge”
• SATA, USB, Keyboard, …

o Simplifies design, saves resources
• Keyboard doesn’t need as much bandwidth as memory!

❑ Originally used to be two separate chips
o North bridge is now often integrated into CPU package

“A typical north/southbridge layout,”Fred the Oyster, Wikimedia commons

Communicating with peripherals

❑ From the processor perspective, interface has not changed much

❑ Default operation is still memory-mapped I/O
o CPU writes to a special address region

o Memory requests get translated to requests to peripheral device

o Device responses get translated to memory responses

❑ MMIO not treated specially by CPU
o Except, mapped region is not cacheable

o E.g., If peripheral omits a read response, CPU hangs

o BIG problem: Peripheral access is SLOW!
• LW instruction waiting forever… We should be doing something else while we wait

Introducing Direct Memory Access (DMA)

❑ To solve the problem of high-latency, synchronous peripheral access

❑ The CPU delegates memory access
o Either to peripheral device, or to a separate “DMA controller”

o Copying 4 KB from disk to memory no longer requires 4K+ CPU instructions

o CPU asks disk to initiate DMA, and can move on to other things

CPU + Cache

Peripherals

Memory ROM

DMA!

Introducing Direct Memory Access (DMA)

❑ High performance with DMA, by overlapping high-latency access

CPU

Memory

Peripheral

Without DMA, repeating
“LW t0 0(a0); SW t0 0(a1);”

With DMA

Peripheral Component Interconnect Express

❑ Newest in a long line of expansion bus standards
o ISA, AGP, PCI, …

❑ PCIe is currently de-facto standard for high-performance peripherals
o GPUs, NVMe storage, Ethernet, …

o Classified into “Generations”, organized into multiple “Lanes”
• E.g., Single Gen 3 lane capable of ~1 GB/s, 16 lane device capable of ~16 GB/s

• Currently migrating into ~2 GB/s/lane Gen 4 and ~4 GB/s/lane Gen 5

“Various slots on a computer motherboard,” w:user:snickerdo , Wikimedia commons

PCIe x4

PCIe x16

PCIe x1

PCIe x16

PCIe “bus” is not a bus

❑ A true bus architecture saves silicon, but silicon is cheap now!
o Moore’s law…

❑ Despite the “bus” name, PCIe implements point-to-point connection
o Multiple peripherals can transmit data at once

• Subject to CPU-side bandwidth limitations

o Also supports peer-to-peer communication
• Doesn’t eat into CPU-side bandwidth budget

• Needs agreement and support from both devices

• E.g., Ethernet to storage, GPU to GPU, …

CPU +
Memory

DMA Controller

Peripheral
Root

Complex
CPU +

Memory

Peripheral

Peripheral

Peripheral

Vs.

CS 152: Computer Systems Architecture
Storage Technologies

Sang-Woo Jun

Winter 2022

Storage Used To be a Secondary Concern

❑ Typically, storage was not a first order citizen of a computer system
o As alluded to by its name “secondary storage”

o Its job was to load programs and data to memory, and disappear

o Most applications only worked with CPU and system memory (DRAM)

o Extreme applications like DBMSs were the exception

❑ Because conventional secondary storage was very slow
o Things are changing!

Some (Pre)History

Magnetic core memory
1950~1970s

(1024 bits in photo)

Rope memory (ROM) 1960’s
72 KiB per cubic foot!

Hand-woven to program the
Apollo guidance computer

Drum memory
100s of KiB

1950’s

Photos from Wikipedia

Some (More Recent) History

Photos from Wikipedia

Floppy disk drives
1970’s~2000’s

100 KiBs to 1.44 MiB

Hard disk drives
1950’s to present

MBs to TBs

Some (Current) History

Solid State Drives
2000’s to present

GB to TBs

Non-Volatile Memory
2010’s to present

GBs

Hard Disk Drives

❑ Dominant storage medium for the longest time
o Still the largest capacity share

❑ Data organized into multiple magnetic platters
o Mechanical head needs to move to where data is, to read it

o Good sequential access, terrible random access
• 100s of MB/s sequential, maybe 1 MB/s 4 KB random

o Time for the head to move to the right location (“seek time”) may be ms long
• 1,000,000s of cycles!

❑ Typically “ATA” (Including IDE and EIDE), and later “SATA” interfaces
o Connected via “South bridge” chipset

Ding Yuan, “Operating Systems ECE344 Lecture 11: File System”

Solid State Drives

❑ “Solid state”, meaning no mechanical parts, addressed much like DRAM
o Relatively low latency compared to HDDs (10s of us, compared to ms)

o Easily parallelizable using more chips – Multi-GB/s

❑ Simple explanation: flash cells store state in a “floating gate” by charging
it at a high voltage
o High voltage acquired via internal charge pump (no need for high V input)

Solid State Drives

❑ Serial ATA (SATA) interface, over Advanced Host Controller Interface
(AHCI) standard
o Used to be connected to south bridge,

o Up to 600 MB/s, quickly became too slow for SSDs

❑ Non-Volatile Memory Express (NVMe)
o PCIe-attached storage devices – multi-GB/s

o Redesigns many storage support components in the OS for performance

Non-Volatile Memory

❑ Naming convention is a bit vague
o Flash storage is also often called NVM

• Storage-Class Memory (SCM)?

o Anything that is non-volatile and fast?

❑ Too fast for even PCIe/NVMe software
o Plugged into memory slots, accessed like

memory

❑ But not quite as fast as DRAM
o Latency/Bandwidth/Access granularity

o Usage under active research!

Souce: NetApp blog, “Storage Class Memory: What’s Next in Enterprise Storage,” 2018

System Architecture Snapshot (2022)

CPU

GPU

Host Memory
(DDR4,…)

I/O Hub (IOH)

NVMe

Network
Interface

…

QPI/UPI
12.8 GB/s (QPI)
20.8 GB/s (UPI)

PCIe
16-lane PCIe Gen3: 16 GB/s

…

DDR4 2666 MHz
128 GB/s
100s of GB

Lots of moving parts!

South Bridge SSD

SATA
Up to 600 MB/s

Storage-Class
Memory

Flash Storage

❑ Most prominent solid state storage technology
o Few other technologies available at scale (Intel X-Point one of few examples)

❑ Flash cells store data in “floating gate” by charging it at high voltage*

❑ Cells configured into NOR-flash or NAND-flash types
o NOR-flash is byte-addressable, but costly

o NAND-flash is “page” addressable, but cheap

❑ Many bits can be stored in a cell by differentiating between the amount
of charge in the cell
o Single-Level Cell (SLC), Multi (MLC), Triple (TLC), Quad (QLC)

o Typically cheaper, but slower with more bits per cell

*Variations exist, but basic idea is similar

3D NAND-Flash

❑ NAND-Flash scaling limited by charge capacity in a floating gate
o Only a few hundred electrons can fit at current sizes

o Can’t afford to leak even a few electrons!

❑ Solution: 3D stacked structure… For now!

NAND-Flash Fabric Characteristics

❑ Read/write in “page” granularity
o 4/8/16 KiB according to technology

o Corresponds to disk “sector” (typically 4 KiB)

o Read takes 10s of us to 100s of us depending on tech

o Writes are slower, takes 100s of us depending on tech

❑ A third action, “erase”
o A page can only be written to, after it is erased

o Under the hood: erase sets all bits to 1, write can only change some to 0

o Problem : Erase has very high latency, typically ms

o Problem : Each cell has limited program/erase lifetime (thousands, for modern
devices) – Cells become slowly less reliable

NAND-Flash Fabric Characteristics

❑ Performance impact of high-latency erase mitigated
using large erase units (“blocks”)
o Hundreds of pages erased at once

❑ What these mean: in-place updates are no longer
feasible
o In-place write requires whole block to be re-written

o Hot pages will wear out very quickly

❑ People would not use flash if it required too much
special handling “page”

(~8 KB)

“block” (~2 MB)

NAND-Flash SSD Architecture

❑ High bandwidth achieved by stringing organizing many flash chips into
many busses
o Enough chips on a bus to saturate bus bandwidth

o More busses to get more bandwidth

❑ Many dimensions of addressing!
o Bus, chip, block, page

The Solution: Flash Translation Layer (FTL)

❑ Exposes a logical, linear address of pages
to the host

❑ A “Flash Translation Layer” keeps track of
actual physical locations of pages and
performs translation

❑ Transparently performs many functions
for performance/durability

Flash Translation Layer

…

Host

Logical Block Address

Bus, Chip, Block, Page…

The physical location of a logical page can now change!

Some Jobs of the Flash Translation Layer

❑ Logical-to-physical mapping

❑ Bad block management

❑ Wear leveling: Assign writes to pages that have less wear

❑ Error correction: Each page physically has a few more bits for error codes
o Reed-Solomon, BCH, LDPC, …

❑ Deduplication: Logically map pages with same data to same physical page

❑ Garbage collection: Clear stale data and compact pages to fewer blocks

❑ Write-ahead logging: Improve burst write performance

❑ Caching, prefetching,…

That’s a Lot of Work for an
Embedded System!

Thomas Rent, “SSD Controller,” storagereview.com
Jeremy, “How Flash Drives Fail,” recovermyflashdrive.com

Andrew Huang, “On Hacking MicroSD Cards,” bunniestudios.com

❑ Needs to maintain multi-GB/s bandwidth

❑ Typical desktop SSDs have multicore ARM processors and gigabytes of
memory to run the FTL
o FTLs on smaller devices have to sacrifice various functionality

SATA SSD USB Thumbdrive

MicroSD

Some FTL Variations

❑ Page level mapping vs. Block level mapping
o 1 TB SSD with 8 KB blocks need 1 GB mapping table

o But typically better performance/lifetime with finer mapping

❑ Wear leveling granularity
o Honest priority queue is too much overhead

o Many shortcuts, including group based, hot-cold, etc

❑ FPGA/ASIC acceleration

❑ Open-channel SSD – No FTL
o Leaves it to the host to make intelligent, high-level decisions

o Incurs host machine overhead

Managing Write Performance

❑ Write speed is slower than reads, especially if page needs to be erased

❑ Many techniques to mitigate write overhead
o Write-ahead log on DRAM

o Pre-erased pool of pages

o For MLC/TLC/QLC, use some pages in “SLC mode” for faster write-ahead log –
Need to be copied back later

Flash-Optimized File Systems

❑ Try to organize I/O to make it more efficient for flash storage (and FTL)

❑ Typically “Log-Structured” File Systems
o Random writes are first written to a circular log, then written in large units

o Often multiple logs for hot/cold data

o Reading from log would have been very bad for disk (gather scattered data)

❑ JFFS , YAFFS, F2FS, NILFS, …

Storage in the Network

❑ Prepare for lightning rounds of very high-level concepts!

Redundant Array of Independent Disks
(RAID)

❑ Technology of managing multiple storage devices
o Typically in a single machine/array, due to limitations of fault-tolerance

❑ Multiple levels, depending on how to manage fault-tolerance
o RAID 0 and RAID 5 most popular right now

❑ RAID 0: No fault tolerance, blocks striped across however many drives
o Fastest performance

o Drive failure results in data loss

o Block size configurable

o Similar in use cases to the Linux Logical Volume manager (LVM)

Fault-Tolerance in RAID 5

A1 A2 A3 AP

B1 B2 BP B3

❑ RAID 5 stripes blocks across available storage, but also stores a parity
block
o Parity block calculated using xor (A1^A2^A3=AP)

o One disk failure can be recovered by re-calculating parity
• A1 = AP^A2^A3, etc

o Two disk failure cannot be recovered

o Slower writes, decreased effective capacity

Storage 1 Storage 2 Storage 3 Storage 4

Degraded Mode in RAID 5

❑ In case of a disk failure it enters the “degraded mode”
o Accesses from failed disk is served by reading all others and xor’ing them (slower

performance)

❑ The failed disk must be replaced, and then “rebuilt”
o All other storages are read start-to-finish, and parity calculated to recover the

original data

o With many disks, it takes long to read everything – “Declustering” to create
multiple parity domains

o Sometimes a “hot spare” disk is added to be idle, and quickly replace a failed
device

Network-Attached Storage (NAS)

❑ Intuition: Server dedicated to serving files “File Server”
o File-level abstraction

o NAS device own the local RAID, File system, etc

o Accessed via file system/network protocol like NFS (Network File System), or FTP

❑ Fixed functionality, using embedded systems with acceleration
o Hardware packet processing, etc

❑ Regular Linux servers also configured to act as NAS

❑ Each NAS node is a separate entity – Larger storage cluster needs
additional management

Network-Attached Storage (NAS)

❑ Easy to scale and manage compared to direct-attached storage
o Buy a NAS box, plug it into an Ethernet port

o Need more storage? Plug in more drives into the box

❑ Difficult to scale out of the centralized single node limit

❑ Single node performance limitations
o Server performance, network performance

Ethernet, etc

Client

Client

Client

CPUMem

Storage-Area Networks (SAN)

❑ In the beginning: separate network just for storage traffic
o Fibre Channel, etc, first created because Ethernet was too slow

o Switch, hubs, and the usual infrastructure

❑ Easier to scale, manage by adding storage to the network
o Performance distributed across many storage devices

❑ Block level access to individual storage nodes in the network

❑ Controversial opinion: Traditional separate SAN is dying out
o Ethernet is unifying all networks in the datacenter

• 10 GbE, 40 GbE slowly subsuming Fibre Channel, Infiniband, …

Converged Infrastructure

❑ Computation, Memory, Storage converged into a single unit, and
replicated

❑ Became easier to manage compared to separate storage domains
o Software became better (Distributed file systems, MapReduce, etc)

o Decreased complexity – When a node dies, simply replace the whole thing

❑ Cost-effective by using commercial off-the-shelf parts (PCs)
o Economy of scale

o No special equipment (e.g., SAN)

Chris von Nieda, “How Does Google Work,” 2010

Hyper-Converged Infrastructure

❑ Still (relatively) homogenous units of compute, memory, storage

❑ Each unit is virtualized, disaggregated via software
o E.g., storage is accessed as a pool as if on a SAN

o Each unit can be scaled independently

o A cloud VM can be configured to access an arbitrary amount of virtual storage

o Example: vmware vSAN

Object Storage

❑ Instead of managing content-oblivious blocks, the file system manages
objects with their own metadata
o Instead of directory/file hierarchies, each object addressed via global identifier

o Kind of like key-value stores, in fact, the difference is ill-defined

o e.g., Lustre, Ceph object store

❑ An “Objest Storage Device” is storage hardware that exposes an object
interface
o Still mostly in research phases

o High level semantics of storage available to the hardware controller for
optimization

